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Contact: Pat Jackson – pjackson@ndow.org 

 

TITLE: Using non-invasive techniques to estimate the abundance and occurrence of 
black bears (Ursus americanus) in Nevada 

 
 

DETAILED STUDY DESIGN 

 
Nevada’s black bears occupy parts of the Sierra Nevada, Sweetwater, Pine Nut, Wassuk, and 
White mountain ranges on the western edge of the state near Lake Tahoe (Beckmann 2002). 
More specifically, black bears select conifer forests within these mountain ranges, while the 
sage-brush valley bottoms are readily traversable but not highly suited to the establishment of 
home ranges (Beckmann and Lackey 2004). In addition to these more rural areas, black bears 
will also use urban environments in western Nevada (Beckmann 2002). Black bears in these 
urban areas tend to be larger in body size, occur at higher densities, and generally have smaller 
home ranges than more rural black bears. These differences are attributable to the relative 
abundance of anthropogenic food sources near towns and cities (Beckmann 2002). 

We have centered our sampling efforts on the current range of black bears. NDOW 
maintains a shapefile depicting this extent (http://gis.ndow.nv.gov/ndowdata/). Sampling 
schemes are typically devised with a resolution determined by some proportion to the overall 
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home range size of the target species. Within this context, there are a variety of sampling 
schemes that could be implemented including array sampling, stratified random sampling, 
clustered sampling, or temporal sequence sampling (Sun et al. 2014). Here we have 
implemented a consistent grid sampling approach (i.e., regular sampling) throughout the current 
range of black bears. We selected this approach given that; i) NDOW’s scope of work is to 
develop “(1) a statewide population estimate on black bear with statistical confidence intervals, 
(2) an estimate on how densities vary throughout inhabited portions of Nevada, and (3) an optimal 
sampling framework that may be used to develop population estimates,” 2) the most recent sampling for 
black bear home range size and distribution in Nevada occurred in 2002, and 3) this effort identified 
highly variable home range sizes. For instance, the home range size for black bears inhabiting more rural 

areas was estimated to be 172.8 - 519.6 km2 for female and male bears respectively (Beckmann 2002). 
The home range sizes were smaller and much more consistent in the urban areas. These ranged from 

52.9 - 55.2 km2 (Beckmann 2002). 
As NDOW is interested in the application of passive survey techniques for population 

and distribution estimation of black bears, sampling across the range of the species distribution 
in the state is necessary. Thus, a grid sampling approach provides the most reliable means to 
precisely measure the abundance and distribution of black bears in the state. This approach is 
consistent with a growing appreciation among researchers and wildlife managers that unbiased 
sampling designs are more appropriate measures for depicting animal occurrence (Tobler and 
Powell 2013; Swanson et al. 2015). With a grid sampling scheme selected, the next decision 
was the resolution that most appropriate to assess the research objectives. 

The spacing of sampling efforts is fundamental to the quantification of accurate 
population and distribution estimates (Sun et al. 2014). If traps are too far apart, animals of 
interest may only be detected at a single trap and the resultant models will not converge. If the 
traps do not span an adequate amount of the state space, then all animals across that range will 
not have a non-zero probability of detection, and density will be under estimated (Sollmann et 
al. 2012). Further, trap placement that is too close together can be cost-prohibitive when 
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implemented across a species population range. There were several factors that we considered 
herein; 

1) Resolutions for hair snaring and camera trapping of black bears in the published literature 

vary from 2.6 km2 to 157.1 km2 (see Kelly and Holub 2008; Gardner et al. 2010; Wilton et 
al. 2014). 

 
2) Resolution should be, at a minimum, the size of one animal’s home range (Tobler and 

Powell 2013) and a resolution of two traps per home range is advised (Dillon and Kelly 

2007). 
 

3) Given this evidence and the fact that home ranges for black bears in Nevada vary from 52.9 

and 519.6 km2 (Beckmann 2002), we selected a resolution of 49 km2 or 1- 10 traps per 
Nevada black bear home range. The other advantage of this resolution is that it was 

effectively applied in another published study for black bear density (Stetz et al. 2013). 

Data Collection System Our data collection system includes; 1) DNA mark-recapture 
estimation using SCR techniques from hair snaring of black bears and 2) density estimation and 

probability of occurrence mapping 
from concurrent camera trapping (Fig. 
1). At each site we have deployed 
barbed wire hair snares and Bushnell 
Trophy Cam HD Aggressor – No 
Glow, Model 119776C camera-traps 
(Lepard et al. in review; Fig. 1). These 
passive, non-invasive technologies 
enable us to pursue our research 
objectives in this study. 

 

Evaluating Objective 1 - Abundance 

Estimation via SCR and Hair Snaring 

We are in the process of collecting black 

bear hair samples using barbed wire snares 

(Woods et al. 1999; Wilton et al. 2014, 

2016). 

These snares consist of 16-gauge 
barbed wire oriented 50 cm above 
ground and wrapped around nearby 
trees forming a perimeter around the 
site (Fig. 1; Stetz et al. 2013). In the 
center of each site we are depositing 
an attractant including raspberry oil 
(Mother Murphy’s Laboratories, Inc., 

Greensboro, NC), fish oil, anise oil (Minnesota Snareline Products, Pennock, MN), and Ultimate 
Bear Lure (Wildlife Research Center, Ramsey, MN; see Wilton et al. 2014). Hair snares are 
being checked weekly. This time period coincides with the summer season when bears are 
losing hair on their coats. During each visit, we check the length of the barbed wire for hair and 
package each individual hair sample into coin envelopes using gloved hands. The samples are 
then be air dried and prepared for processing. 
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Via genetic sequencing analysis, each bear in our study will be marked and potentially 
recaptured at later time periods. We will then implement SCR techniques to develop the 
population estimate (Efford and Fewster 2013; Royle et al. 2014). The SCR model uses the 
spatial correlation of recaptures of bears over a sampling grid to estimate the location of 
individual centers of activity of both marked and unmarked animal subjects. This approach 
models the spatial correlation in animal detections as a natural process (Royle et al. 2014). 
Within this modeling framework, the capture histories (i.e., number of times each bear was 
detected) are assumed to derive from a Poisson distribution; 

𝑦𝑖𝑗𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗) 

where 𝑦𝑖𝑗𝑘 is the number of detections for animal i, at trap j in occasion k while 𝜆𝑖𝑗 is the 

probability of detecting animal i at location j. The spatial pattern of detections from an individual 
animal is used to estimate the parameters of the chosen detection model, including the 
unobserved location of the animal’s activity center and the scale parameter (Royle et al. 2014P. 
128). The detection model quantifies an intuitive concept; that an individual is more likely to be 
detected at traps closer to the center of that individual’s core activity. This part of the model 
takes the form; 

 

 
𝜆𝑖𝑗 = 𝜆0𝑒 

2 

‖𝒙𝑗−𝒔𝑖‖ 

2𝜎2 

where 𝜆𝑖𝑗 is the probability animal i is detected at trap j, 𝜆0 is the probability an animal is 

detected at a trap given that it occupied that area, 𝜎 is the scale parameter (i.e., how detection 

probability decreases with distance), 𝑥𝑗 is the location of trap j, 𝒔𝑖 is the unobserved location of 

the activity center of animal i, and ‖𝒙𝑗 − 𝒔𝑖‖ is the Euclidean distance between trap j and 
unobserved activity center location i. The output of this technique will be an estimate, with 
associated confidence intervals, of the number of black bears in Nevada. Furthermore, this 
estimate divided by the effort across the sampling area will provide an estimate of the density 

(#Bears / km2; Fig. 2). 

 

 
Fig. 2. The passive non-invasive technology and the modeling techniques that will be used to 

predict black bear abundance, density, and occurrence in the state of Nevada. 
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While SCR modeling is a robust technique for developing a population estimate of the 
number of bears with an associated confidence interval, mapping the spatial variation in density 
is most suited to occupancy mapping where habitat and multi-species effects can be readily 
incorporated (Kelly and Holub 2008; Royle et al. 2009; Tobler and Powell 2013; Swanson et al. 
2015). The spatial variation in black bear density and occurrence is particularly useful 
information for understanding how increasing black bear abundance may lead to conflict with 
human communities (Lackey et al. 2004). Given NDOW’s stated desire to identify “an optimal 
sampling framework that may be used to develop population estimates” we have elected to also 
consider the role that camera trapping may play in examining spatial variable in black bear 
density/occurrence and how these variation may correlate with human activity in Nevada. 
Camera trapping is a flexible tool which can produce maps depicting spatial variation in black 
bear density and occurrence (Kays and Slauson 2008; Kelly and Holub 2008; Gardner et al. 
2010). These predictive maps can be developed by season and can be compared with known 
patterns of human activity to identify where conflict hotspots may occur even before conflict 
incidences are reported. Thus, camera trapping provides a useful framework for the optimization 
of future research efforts and the prioritization of potential mitigation work conducted by NDOW. 

 

Evaluating Objective 2 - Density Estimation and Probability of Occurrence Mapping from Camera 

Trapping While mark-recapture studies are a traditional means to derive abundance estimates of wildlife, 

emerging techniques, such as camera trapping, demonstrate that density estimates can be calculated from 

unmarked individuals (Chandler et al. 2013; Denes et al. 

2015; Chauvenet et al. 2017). Thus, in addition to the hair snaring, we are also mapping black 
bear density (Royle et al. 2009) and the probability of black bear occurrence (Kelly and Holub 
2008) from camera trap data. At each site we have deployed a Bushnell Trophy Cam camera 
trap. As with the barbed wire, we have positioned each camera 50 cm above the ground. 
However, in this case, the camera is affixed to a tree outside of the hair snare site (Fig. 1). The 
camera traps are positioned in a northerly direction directed across the viewshed of the hair 
snare (Fig. 1). The northerly direction is a proven technique to decrease false triggers caused 
by sunrise and sunset (Kays and Slauson 2008; Newey et al. 2015). We have programmed 
these camera traps to take three images per trigger via these settings (LED control = high, time 
interval = 10 seconds, sensor level = auto, and night vision shutter = high; Lepard et al. in 
review). Furthermore, we have set a time interval between triggers of 5 minutes. Our previous 
research has shown that this time interval does not compromise detections of conspicuous 
species, such as black bears, but can drastically extend battery life and memory (Lepard et al. 
in review). We chose these settings (LED, sensor, and shutter) following a series of pilot 
deployments that suggested these settings simultaneously maximized the sensitivity of camera- 
trap detection and the clarity of wildlife photographed. 

The camera trapping effort will be able to provide robust density estimates and predict 
the probability of black bear occurrence across seasons. This is important, given that black bear 
conflict with humans has been shown to exhibit seasonal variability (Baruch-Mordo et al. 2014; 
Obbard et al. 2014). All data will be processed (i.e., animals on the images identified) by 
undergraduate student employees in the PI’s laboratory at Michigan State University. 

 
Density Estimation - Encounter histories from camera traps will be analyzed using a spatial 
capture modeling for unmarked populations (Royle et al. 2014 p. 473). Note: we will also 
consider time-to-event (TTE) approaches to estimate abundance via the interpretation of 
unmarked animal trapping rates (see Moeller 2017). From trapping rate and encounter data (i.e, 
interpretation of camera trap photographs) black bears will not be individually identifiable, as 
they are in our hair snare encounter models. The hair snare encounter data consist of counts 
(𝑦𝑖𝑗𝑘) of detection for specific animals (𝑖) at a particular trap (𝑗) on a given occasion (𝑘). The 
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camera encounter histories will simply be the total number of detections (𝑛𝑗𝑘) at a particular trap 

(𝑗) on a given occasion (𝑘). The observed encounter histories from the camera (𝑛𝑗𝑘) can be 

thought of as the sum of unobserved individual encounter histories (𝑦 𝑖𝑗𝑘) over all detected 

animals, such that 𝑛𝑗𝑘 = ∑𝑖 𝑦 𝑖𝑗𝑘. The number of detections (𝑛𝑗𝑘) are then assumed to be Poisson 

distributed with probability Λ𝑗 such that 

 
where , 

𝑛𝑗𝑘 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(Λ𝑗) 
 

2 

 ‖𝒙𝑗−𝒔𝑖‖ 

( ) 

Λ𝑗 = 𝜆0 ∑ 𝑒 
𝑖 

2𝜎2 

𝜆0 is the rate at which an animal is detected at a trap given the animal encountered the trap, 

𝒙𝑗 is the location of trap j, 

𝒔𝑖 is the unobserved location of the center of activity for animal i, 
𝜎 is the scale parameter, relating how detection probability decreases with distance and 

‖𝒙𝑗 − 𝒔𝑖‖ is the Euclidean distance between trap j and unobserved activity center location i. 

 
Additionally, the same assumptions of the marked model are made in the unmarked 

model with respect to the chosen distance function and spatial distribution (see equations from 
previous section). Given that camera detections will be unable to distinguish between male and 
female bears, this model will require the additional assumption that male and female bears have 
equal baseline encounter rates (𝜆0) and equivalent scale parameters (𝜎). The density estimates 
from the camera data will undoubtedly be less precise given the reduced amount of information 
(Royle et al. 2014 p. 486). Though the hair snare data and camera data will not be independent, 
we feel there is value in comparing these two estimates of black bear density to determine the 
best technique for NDOW to use to map black bear density in future. 

 

Occupancy Estimation - To estimate detection and occupancy (hereafter synonymous with p 
and ψ, respectively), we will use a hierarchical Bayesian framework to fit occupancy models to 
detection/non-detection histories of black bears. Here, p refers to the probability of detecting 
black bears at a site during a single survey replicate (i.e., one week), given that it is occupied by 
that species (Mackenzie et al. 2002), and ψ refers to the probability that the site was used by 
the species during the study (Kendall and White 2009). We will bin black bear detections into 
one-week survey replicates using the camtrapR package (Niedballa et al. 2016). We will select 
one-week intervals to reflect common practice among mammalian camera-trap studies (e.g., 
Kilshaw et al. 2015; Moll et al. 2016) and to help ensure our models meet the closure 
assumption of single-season occupancy models (Kendall and White 2009). 

We will include a random intercept by site to account for potential spatial autocorrelation 
among model residuals (Rhodes et al. 2009; Moll et al. 2016). This model will take the form: 

 
logit(ψi) = αr + α1*habitati …+ α2*habitatn, 

 

where ψi is the occupancy probability at the ith camera-trap site, the intercept α is a normally 
distributed random variable whose mean and variance are hyperparameters, and a series of 
habitat covariates that describe each of the ith sites. Habitat covariates will be developed as 
part of a Geographic Information System (GIS) that we will develop to describe the study area. 
This GIS database will be built using data housed in the NDOW and Nevada state geospatial 
libraries. 

Finally, we will develop a predictive black bear occupancy map for each season by 
multiplying the vector of coefficients from the occupancy model (detailed above), composed of 
the posterior mean of the random intercept (μ) and model-averaged posterior means of habitat 
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coefficients, with values of rasters for each habitat covariate across the full extent of the black 
bear range in Nevada. To develop these predictions, we will use the inverse logit function (i.e., 
exp(α)/(exp(α) +1)) to back-transform the response variable such that it was scaled from 0 to 1 
(i.e., estimated probability of occupancy, ψ) on our predictive maps. 

 

Model Prediction, Evaluation, and Assessment In all cases, models will be implemented 
using appropriate software (STAN, BUGS, glmmADMB, see, e.g., Fournier et al. 2012; Skaug et 
al. 2015; Hooten and Hobbs 2015), or depending on the computational complexity (e.g., if 
spatio-temporal residual dependence structures are necessary to meet model assumptions) we 
will write our own software. We will conduct extensive exploratory data analysis (EDA) using R 
(R Core Team 2016) and thoroughly assess key model assumptions (test for multicollinearity 
among the predictor variables excluding those with high correlations or use a variable selection 
model, e.g., Bayesian lasso), assess the appropriateness of the posited error sub-models, and 
diagnose and treat issues e.g., via spatio-temporal random effects, departures from 
independent and identically distributed residuals. 

The analytical frameworks will include an integrated approach for assessing model 
performance and comparing different models using replicated datasets. A replicated dataset 
refers to the dataset that the model would have predicted using the value of the model 
parameters estimated from the observations. Here, each replicated data point can be regarded 
as the “model-predicted” value for the corresponding observation. The posterior distribution for 
the replicated observation is precisely the posterior predictive distribution (e.g., Gelman et al. 
2013; see also Banerjee et al. 2014, for spatial models specifically) but evaluated at the 
observed space-time coordinates. Given field observations, we will confirm if a posited model 
sufficiently explains data variability (i.e., whether the model is consistent with the data). This is 
called model adequacy and is assessed by how well the replicated data emulates the observed 
data. More precisely, we will use some omnibus test measure and compute a Bayesian p-value 
(see e.g., Gelman et al. 2013). 

We will also implement statistical sensitivity analysis for the models. This is relevant 
because we must acknowledge the possibility of more than one reasonable model to provide an 
adequate fit to the dataset under investigation. In some cases, we anticipate enhancing and 
extending a model to address specific aspects of the data, e.g., spatial and/or temporal 
autocorrelation of depredation. There, we want to assess how much the posterior inferences 
change when other probability models are used in place of the present model. Finally, model 
selection techniques will be used to assess the impact of predictor variable and model choice 
among a set of competing models (e.g., Hooten and Hobbs 2015). 

All data, code, results, and predictions will be provided to NDOW. The objective is to use 
the information derived from this study to optimize future efforts to map the population density 
and occurrence of Nevada black bears using non-invasive techniques that are robust. 

 

PROJECT INVESTIGATORS 
 

Dr. Montgomery (PI) is a professor of carnivore ecology in the Department of Fisheries and 
Wildlife at Michigan State University (MSU) the first Land Grant University (see attached 
Biographical Sketch below for more information). At MSU, he is the Director of the Research on 
the Ecology of Carnivores and their Prey (RECaP) Laboratory. The research conducted in the 
RECaP Laboratory is both spatially and taxonomically diverse. However, it consistently involves 
the application and development of techniques to map the abundance, distribution, and 
occurrence of large carnivores. 

 

Dr. Millspaugh (PI) is the Boone and Crockett Professor of Wildlife Conservation at the 
University of Montana (see attached Biographical Sketch below for more information). His 
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research addresses animal space use, habitat interactions, and population dynamics. Dr. 
Millspaugh has worked throughout the Midwest and Western states on a diversity of species 
and systems with a common theme of collaborative research that is applied and intended to 
address relevant questions to wildlife managers. 
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